Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 218(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33544838

RESUMO

Yellow fever virus (YFV) live attenuated vaccine can, in rare cases, cause life-threatening disease, typically in patients with no previous history of severe viral illness. Autosomal recessive (AR) complete IFNAR1 deficiency was reported in one 12-yr-old patient. Here, we studied seven other previously healthy patients aged 13 to 80 yr with unexplained life-threatening YFV vaccine-associated disease. One 13-yr-old patient had AR complete IFNAR2 deficiency. Three other patients vaccinated at the ages of 47, 57, and 64 yr had high titers of circulating auto-Abs against at least 14 of the 17 individual type I IFNs. These antibodies were recently shown to underlie at least 10% of cases of life-threatening COVID-19 pneumonia. The auto-Abs were neutralizing in vitro, blocking the protective effect of IFN-α2 against YFV vaccine strains. AR IFNAR1 or IFNAR2 deficiency and neutralizing auto-Abs against type I IFNs thus accounted for more than half the cases of life-threatening YFV vaccine-associated disease studied here. Previously healthy subjects could be tested for both predispositions before anti-YFV vaccination.


Assuntos
Anticorpos Neutralizantes/imunologia , Autoanticorpos/imunologia , Doenças Autoimunes , COVID-19 , Doenças Genéticas Inatas , Interferon-alfa , Receptor de Interferon alfa e beta , SARS-CoV-2 , Vacina contra Febre Amarela , Vírus da Febre Amarela , Adolescente , Adulto , Idoso , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , COVID-19/genética , COVID-19/imunologia , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/imunologia , Células HEK293 , Humanos , Interferon-alfa/genética , Interferon-alfa/imunologia , Masculino , Pessoa de Meia-Idade , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacina contra Febre Amarela/efeitos adversos , Vacina contra Febre Amarela/genética , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/imunologia
2.
Pharmaceutics ; 11(12)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888119

RESUMO

Both aptamers and siRNA technologies have now reached maturity, and both have been validated with a product in the market. However, although pegaptanib reached the market some time ago, there has been a slow process for new aptamers to follow. Today, some 40 aptamers are in the market, but many in combination with siRNAs, in the form of specific delivery agents. This combination offers the potential to explore the high affinity and specificity of aptamers, the silencing power of siRNA, and, at times, the cytotoxicity of chemotherapy molecules in powerful combinations that promise to delivery new and potent therapies. In this review, we report new developments in the field, following up from our previous work, more specifically on the use of aptamers as delivery agents of siRNA in nanoparticle formulations, alone or in combination with chemotherapy, for the treatment of cancer.

3.
Protein Expr Purif ; 120: 118-25, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26714301

RESUMO

Asparaginase obtained from Escherichia coli and Erwinia chrysanthemi are used to treat acute lymphocytic leukaemia and non-Hodgkin's lymphoma. However, these agents cause severe adverse effects. Saccharomyces cerevisiae asparaginase II, encoded by the ASP3 gene, could be a potential candidate for the formulation of new drugs. This work aimed to purify and characterize the periplasmic asparaginase produced by a recombinant Pichia pastoris strain harbouring the ASP3 gene. The enzyme was purified to homogeneity with an activity recovery of 51.3%. The estimated molecular mass of the enzyme was 136 kDa (under native conditions) and 48.6 kDa and 44.6 kDa (under reducing conditions), suggesting an oligomeric structure. The recombinant asparaginase is apparently non-phosphorylated, and the major difference between the monomers seems to be their degree of glycosylation. The enzyme showed an isoelectric point of 4.5 and maximum activity at 46 °C and pH 7.2, retaining 92% of the activity at 37 °C. Circular dichroism and fluorescence analyses showed that the enzyme structure is predominantly α-helical with the contribution of ß-sheet and that it remains stable up to 45 °C and in the pH range of 6-10. In vitro tests indicated that the recombinant asparaginase demonstrated antitumoural activity against K562 leukaemic cells.


Assuntos
Asparaginase/isolamento & purificação , Pichia/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/enzimologia , Antineoplásicos/farmacologia , Asparaginase/metabolismo , Asparaginase/farmacologia , Dicroísmo Circular , Clonagem Molecular , Glicosilação , Humanos , Células K562 , Peso Molecular , Organismos Geneticamente Modificados , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...